Sekarangperhatikan gambar di bawah ini. 198cm d 264cm 19. Keliling sebuah persegi panjang 48 cm dan panjang 15 cm maka lebar persegi panjang tersebut adalah. A3926 cm b4026 cm c4126 cm d4226 cm. 10030 cm 3 C. Keliling 12 10 18 8 48 cm. Volume bangun ruang berikut adalah. Keliling bangun tersebut adalah 80 cm. Baca juga: Soal Dan Pembahasan ABdapat diperoleh, seperti ditunjukkan dalam gambar c, dengan pemecahan secara simultan dua persamaan vektor. Titik c dalam diagram percepatan diperoleh dengan segitiga-segitiga sebangun (segitiga A-B-C dan A-b'-c' dalam gambar a adalah sebangun, dengan Ab' sama dengan besarnya ABA). ADCn diperoleh dengan mendapatkan UD. AD dapat diperoleh. Padagambar disamping panjang AB=10 cm dan AC = 24cm. hitunglah : a.panjang jari2 lingkaran dalam b.BF c.OB buat jalan! SakuraChiyo SakuraChiyo AB = 10 cm AC = 24 cm BC = 26 cm a. r = L/s s = 1/2×(24+26+10) = 30 cm L= a×t/2 =24×10/2 Diketahui sebuah trapesium sama kaki memiliki sisi sejajar 6 cm dan 12 cm, sisi miring 10 cm dan tingginya Perhatikangambar disamping ini panjang sisi ac adalah titik-titik cm. Lamtanmoi 1 Berdasarkan gambar di atas, maka Top 8: Tentukan Panjang Ab Dari Gambar Berikut at Artikel - DV9; Top 9: Trik Top Kuasai UN USBN SMP MTs 2019 Apa itu Top 1: Jika diketahui AB=12 cm , BC = 16 cm,maka panjang BD adalah ,,,, cm; Top 2 . Pada gambar di samping, panjang AB = 12 cm dan AC = 16 cm, Titik O merupakan titik pusat lingkaran, Hitunglah jari-jari lingkaran O pembahasan kunci jawaban Matematika kelas 8 halaman 67 68 69 70 71 Ayo Kita Berlatih semester 2 beserta caranya pada materi Bab 7 Lingkaran. Pembahasan kali ini merupakan lanjutan dari tugas sebelumnya dimana kalian telah mengerjakan soal Suatu Survei Dilakukan Secara Online Untuk Mendapatkan Informasi Tentang Banyak File Musik secara lengkap. B. Esai. 14. Perhatikan dua argumentasi berikut, kemudian tentukan argumen yang salah menurutmu. Iqbal Karena ___ DG ⊥ ___ BC , m∠BHD = m∠DHC = m∠CHG = m∠GHB = 90°, maka dapat dikatakan bahwa ___ DG adalah garis sumbu ___ BC . Rusda ___ DG ⊥ ___ BC , tetapi ___ DG bukan garis sumbu ___ BC karena ___ DG bukan diameter. Keterangan Garis sumbu adalah garis yang membagi suatu ruas garis menjadi dua bagian yang sama panjang. Jawaban Dari argumentasi Iqbal dan Rusda, menurut saya argumentasi Rusda yang benar dan argumentasi Iqbal yang salah. Karena meskipun garis DG tegak lurus dengan garis BC, namun garis DG bukan diameter lingkaran maka garis DG tidak dapat dikatakan sebagai garis sumbu dari garis BC. Tetapi jika garis DG adalah diameter lingkaran maka garis DG dapat dikatakan sebagai garis sumbu dari garis BC. 15. Perhatikan gambar berikut. Pada gambar di samping, panjang AB = 12 cm dan AC = 16 cm, Titik O merupakan titik pusat lingkaran. Hitunglah a. jari-jari lingkaran O, b. luas daerah yang diarsir. Jawaban a. Jari jari lingkaran diameter =√12² + 16² diameter =√144 + 256 diameter =√400 diameter =20 cm jari jari = 10 cm b. Luas daerah yang diarsir luas juring = 180°/360° × luas lingkaran L. juring = 180°/360° × 3,14 × 10 × 10 L. juring = 1/2 × 314 L. juring = 157cm² luas segitiga = 1/2 × alas × tinggi L. segitiga = 1/2 × 12 × 16 L. segitiga = 96 cm² Luas daerah yang diarsir = luas juring – luas segitiga L. daerah yang diarsir = 157cm² – 96 cm² = 61 cm² 16. Rumah Makan Pak Anas Jawaban, buka disini Pak Anas Memiliki Suatu Rumah Makan di Suatu Daerah di Surabaya Demikian pembahasan kunci jawaban Matematika kelas 8 halaman 67 68 69 70 71 Ayo Kita Berlatih beserta caranya pada buku semester 2 kurikulum 2013 revisi 2017. Semoga bermanfaat dan berguna bagi kalian. Kerjakan juga pembahasan soal lainnya. Terimakasih, selamat belajar! Postingan ini menyajikan pembahasan contoh soal panjang garis singgung lingkaran. Garis singgung lingkaran adalah suatu garis yang memotong lingkaran hanya disatu titik dan tegak lurus dengan jari-jari lingkaran pada titik singgung lingkaran tersebut. Panjang garis singgung lingkaran digambarkan sebagai adalah panjang garis singgung lingkaranBerdasarkan gambar diatas, panjang garis singgung lingkaran AB ditentukan menggunakan rumus Pythagoras dibawah iniAB2 = OA2 – OB2j2 = d2 – r2Untuk lebih jelasnya dibawah ini diberikan beberapa pembahasan contoh soal panjang garis singgung soal 1Contoh soal panjang garis singgung lingkaran 1Sebuah lingkaran dengan pusat dititik O. AP adalah garis singgung dengan panjang 12 cm dan PB = 8 cm. Panjang jari-jari lingkaran tersebut adalah…PembahasanJari-jari lingkaran pada soal ini dinyatakan oleh = OP2 – AO2AP2 = OB + BP2 – OA2OB = OA = jari-jari lingkaraan sehingga rumus diatas menjadiAP2 = OA + BP2 – OA212 cm2 = OA + 8 cm2 – OA2144 cm2 = OA2 + 16 cm OA + 64 cm2 – OA216 cm OA = 144 – 64 = 80 cm2OA = 80 cm2 / 16 cm= 5 cmJadi jari-jari lingkaran tersebut sebesar 8 soal 2Contoh soal panjang garis singgung lingkaran nomor 2Perhatikan gambar disamping ini. Jika AB = 25 cm dan BD = 18 cm, hitunglah panjang AC dan panjang AB = AD + BD25 cm = AD + 18 cmAD = 25 cm – 18 cm = 7 cmAC = AD = 7 cm jari-jari lingkaranBC adalah panjang garis singgung lingkaran sehingga dihitung dengan rumus dibawah iniBC2 = AB2 – AC2BC2 = 25 cm2 – 7 cm2BC2 = 625 cm2 – 49 cm2 = 576 cm2BC = √ 576 cm = 24 cmContoh soal 3Contoh soal panjang garis singgung lingkaran nomor 3Panjang AB = 12 cm dan BC = 6 cm, panjang jari-jari lingkaran disamping adalah…PembahasanBC2 = AB2 – AC26 cm2 = 12 cm2 – AC2AC2 = 144 cm2 – 36 cm2 = 108 cm2AC = √ 108 cm = 6 √ 3 cmContoh soal 4Jari-jari suatu lingkaran 16 cm. Jarak suatu titik ke titik pusat lingkaran adalah 34 cm maka panjang garis singgung lingkaran yang ditarik dari titik tersebut adalah…Pembahasanj2 = d2 – r2j2 = 34 cm2 – 16 cm2j2 = 1156 cm2 – 256 cm2 = 900 cm2j = √ 900 cm = 30 cmContoh soal 5Contoh soal panjang garis singgung lingkaran nomor 5Perhatikan gambar disamping. Jika jari-jari lingkaran = 15 cm, PA = 20 cm maka AB dan PE adalah…PembahasanAP2 = OP2 – OB2 20 cm2 = OP2 – 15 cm2 OP2 = 400 cm2 + 225 cm2 = 625 cm2 OP = √ 625 cm = 25 cmUntuk menentukan panjang AB kita gunakan rumus luas layang-layang dan luas segitiga layang-layang APBO = 2 x luas segitiga APO1/2 . OP . AB = 2 . 1/2 . OA . AP1/2 . 25 cm . AB = 15 cm . 20 cm12,5 cm AB = 300 cm2AB = 300 cm2 / 12,5 cm = 24 cmMenentukan panjang PEOP = OE + PE 25 cm = 15 cm + PEPE = 25 cm – 15 cm = 10 panjang AB = 24 cm dan panjang PE = 10 soal 6Contoh soal panjang garis singgung lingkaran nomor 6Perhatikan gambar disamping. Luas layang-layang OBAC = 525 cm2. Jika panjang BC = 30 cm dan OB = 21 cm maka panjang BA adalah…PembahasanLuas layang-layang OBAC = 1/2 .OA . BC525 cm2 = 1/2 . OA . 30 cm525 cm2 = 15 cm . OAOA = 525 cm2 / 15 cm = 35 cmCara menghitung OA menggunakan rumus pythagorasOA2 = BA2 + OB235 cm2 = BA2 + 21 cm2BA2 = 1225 cm2 – 441 cm2 = 784 cm2BA = √ 784 cm = 28 cmContoh soal 7Contoh soal panjang garis singgung lingkaran nomor 7Pada gambar disamping, panjang jari-jari lingkaran = 5 cm dan panjang OP = 13 cm. Luas layang-layang PQOR adalah…PembahasanPR2 = OP2 – OR2PR2 = 132 – 252 = 144 cm2PR = √ 144 cm = 12 cmLuas segitiga POR1/2 . OR . PR1/2 . 5 cm . 12 cm = 30 cm2Luas PQOR = 2 . luas segitiga PORLuas PQOR = 2 . 30 cm2 = 60 cm2. PembahasanIngat bahwa jika terdapat suatu segitiga dengan panjang sisi atau seperti pada gambar di bawah ini Dengan menggunakan teorema Pythagoras, maka berlaku Pertama perhatikan segitiga ABC, dengan menggunakan teoremaPythagoras, maka panjang AC Selanjutnya, perhaikan segitiga ACD, dengan menggunakan teoremaPythagoras, maka panjang AD Dengan demikian, panjang AD adalah Jadi, pilihan jawaban yang benar adalah bahwa jika terdapat suatu segitiga dengan panjang sisi atau seperti pada gambar di bawah ini Dengan menggunakan teorema Pythagoras, maka berlaku Pertama perhatikan segitiga ABC, dengan menggunakan teoremaPythagoras, maka panjang AC Selanjutnya, perhaikan segitiga ACD, dengan menggunakan teoremaPythagoras, maka panjang AD Dengan demikian, panjang AD adalah Jadi, pilihan jawaban yang benar adalah A. Kelas 9 SMPKESEBANGUNAN DAN KONGRUENSISegitiga-segitiga sebangunSegitiga-segitiga sebangunKESEBANGUNAN DAN KONGRUENSIGEOMETRIMatematikaRekomendasi video solusi lainnya0100Perhatikan gambar di bawah ini!Perbandingan sisi pada seg...0134Perhatikan gambar berikut. 10 cm A B F C D 4cm EDiketahui...Teks videojika kita bertemu soal seperti ini maka perlu kita ingat kembali pada segitiga ini berlaku beberapa rumus seperti a b kuadrat = BD dikali lalu adik kuadrat = BD dikali d c b d dikali DC Nah di sini dikasih tahu bahwa adiknya 12 dan BC nya itu = 15 berarti kita bisa menggunakan yang pertama terlebih dahulu jadinya AB kuadrat = BD dikali b c a b nya itu adalah 12 berarti 12 kuadrat = BD dikali b c nya 15 maka beda itu = 12 * 12 atau 12 kuadrat per 15 Nah ini bisa dibagi 3 Sin phi 4 disini 5 maka ini adalah Puluh delapan per lima kita sudah ketemu bedanya sekarang kita cari DC nya oke. Nah di mana Di sini kan BC nya itu 15 berarti untuk menentukan DC itu 15 dikurang b d berarti DC itu = 15 dikurang b d bedanya adalah 48 per 5 maka ini kita samakan penyebutnya 15 itu adalah 75 per 5 dikurang 48 per 5 = 27 per 5 maka kita sekarang mencari Ad yang ditanya disini adalah AD ke jadi ad = BD dikali DC y maka ini sama dengan bedanya itu 48/5 dikali DC nya adalah 27 per 5 ini = 1296 / 25 maka Adik itu sama dengan akar 1296 dibagi akar 25 = akar 1296 itu adalah 3636 per akar 25 adalah 56 / 5 adalah 7,2 jawaban yang paling tepat adalah C sampai di sini sampai jumpa di soal selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

pada gambar disamping panjang ab 12 cm dan ac 16cm